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Formal arguments are given that the self-diffusion process, understood as the 
mutual diffusion process in a system which consists of two mechanically similar 
species of particles, and which is at total equilibrium if the species labels are 
ignored, is an inherently linear, but nonlocal, transport process. There are no 
nonlinear Burnett effects, and the nonlocal diffusion coefficient is independent 
of the composition of the mixture. The present state of knowledge, from theory 
and from computer experiments, concerning the various quantities which appear 
in the formal analysis is summarized for both fluid and Lorentz systems. 
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1. I N T R O D U C T I O N  

Some years  ago, a t  a t ime when the existence and  signif icance of the 
long- t ime tails of the veloci ty  au tocor re la t ion  funct ion  and  the other  
t r anspor t  t ime corre la t ion  funct ions  were still somewhat  controversial ,  
Professor  E. G. D. Cohen  asked us whether  it  wou ld  be possible  to di rect ly  
s imulate  a self-diffusion process  on a computer ,  the object ive be ing  to 
compu te  the di f fus ion coeff icient  as a rat io  of cur rent  to grad ien t  (in a 
fashion  s imilar  to the exper imenta l  measu remen t  of a diffusion coeff icient  
in a d i f fus ion cell), a n d  then to compa re  the result  with the usual  integral  of 
the veloci ty  au tocor re la t ion  funct ion.  This  suggestion was mot iva ted  by  
quest ions that  h a d  been  raised as to whether  the long- t ime tails were 
p rope r ly  to be  inc luded  in the t ime integral ,  or  somehow " renorma l i zed"  
away.  I t  was easy enough to see how a t ransient  self-diffusion process  could  
be  s imulated,  bu t  it  r ap id ly  b e c a m e  clear  that  the compute r  "exper imen t"  
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was unnecessary, since the self-diffusion process was amenable to an exact 
(at the formal level) theoretical analysis; we present this in Section 2 (an 
abbreviated account was given in a lecture by one of us (])). 

The present discussion is motivated also by the remark by Lebowitz 
and Spohn (2) regarding the desirability of obtaining rigorous justifications 
of the time-correlation function formulas for the transport coefficients, 
even at the purely formal level (i.e., omitting proofs of the existence of 
various limits, etc.). The self-diffusion process is surely the simplest trans- 
port process, and one would expect that an exact (formal) derivation would 
be relatively easy. Such a discussion has in fact been given by Dorfman (3) 
(see also Berne (n)) for the case of a single "tagged" particle moving in a 
system of N -  1 mechanically similar, untagged particles. The diffusion 
coefficient was indeed found to be related to the velocity autocorrelation 
function in the usual way. The previously derived (5) time correlation 
function expression for the super-Burnett self-diffusion coefficient was also 
obtained, giving a flux contribution which is linear in the third-order 
gradient of the number density. This discussion, however, seemed to leave 
open the possibility that other effects might appear when the concentration 
of tagged particles was noninfinitesimal, due to "correlations" among the 
tagged particles. In particular, was it possible that the self-diffusion coeffi- 
cient would depend upon the concentration of tagged particles? Might it 
depend upon the gradient of the tagged particle concentration, i.e., were 
nonlinear effects possible in the self-diffusion process? The common belief 
certainly has been in the negative, in both cases, but a detailed proof has 
been lacking; see, for example, the remarks in this connection by Ernst et 

al. (6) Standard linear response methods have been used by Dufty, (7) with 
the same results, but such methods of course leave unanswered the question 
of nonlinear effects, as well as being subject to the general objections raised 
against linear response theory by van Kampen. (8) 

The analysis in Section 2 considers the general case, both in regard to 
the tagged particle concentration and the possibility of nonlinear effects, 
and it answers both of these questions in the negative. However, it is open 
to the possible objection that the assumed initial state is not a "local 
equilibrium" state. Because of the importance of a correct treatment of 
fluctuations in the theory of transport, we give in Section 3 an alternative 
derivation which starts from a local equilibrium state constructed by the 
imposition of external potential fields which act differently upon the two 
species of particles, and which are switched off at t = 0. The results are 
unchanged. 

Finally, in Section 4 we conclude with a summary of what seems to be 
known, from theoretical analysis and computer experiments, about the 
existence of the various limits which are of interest in the formal analysis. 
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It is important to begin by specifying exactly what we mean by a 
self-diffusion process. First, we regard self-diffusion as the special case of 
mutual diffusion between two species 4 of particles which are mechanically 
identical, differing only in their species labels (1 and 2). We use classical 
(rather than quantum) statistical mechanics throughout. Second, in order to 
exclude the simultaneous occurrence of other transport processes, we 
choose the initial state so that throughout the process the system will be in 
a state of uniform equilibrium if the species labels are ignored. In particu- 
lar, then, all quantities which are independent of the species labels, such as 
the total number density, the pressure, the temperature, etc., are required to 
be constant as functions both of the position within the system and of the 
time. Subject to these conditions, we sample the initial state from some 
specified ensemble in which the individual number densities ni, i = 1 or 2, 
of the two species are, on the average, nonuniform as a function of 
position. We then follow the evolution of these number densities for t > 0 
under the natural dynamics of the system in which the forces among the 
particles are independent of the labels (mechanical similarity), and enquire 
as to the relation between the diffusion current of one species (say 1) and 
its number density gradient. These definitions are essentially those used by 
Raveche and Mayer. (9) 

We will consider through most of the discussion finite d-dimensional 
systems of volume V under periodic boundary conditions. Some further 
discussion of this point is given in the Appendix. 

2. INITIAL GRADIENTS PRODUCED BY RANDOM LABELING 

Our first method of producing the initial state proceeds in two steps: 

S t e p  1. The init ial  phase r U =  (pU, qN), where p U =  (Pl, 
P2 . . . . .  PN ) and qU = {ql, q2 . . . . .  qN ) denote the momenta and positions 
of the N particles, 5 is selected from the canonical (or microcanonical) 
ensemble for specified values of the ensemble parameters N, V, and 
temperature T (or N, V, and energy E). 

Step 2.  Each particle a = 1 , 2 , . . . ,  N is independently of the others 
labeled as species 1 with a given probability P](%) depending upon its 
position q. ,  or as species 2 with probability P2(q.) = 1 - P](q,). 

The system is then allowed to evolve under its equations of motion and 
the specified boundary condition for times t > 0. By assumption the 

4 For simplicity of notation we consider a binary mixture; there is no difficulty' in extending 
the discussion to more than two components.  

5 We use the notation appropriate to a system of point particles, but  the argument  would apply 
equally well to a system of structured particles. 
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particle motions are independent of the labeling, and by construction the 
system is at equilibrium (in the ensemble sense) if the species labeling is 
ignored. However, it is not at equilibrium with respect to the species 
number densities [unless Pl(q) is independent of q], and we expect that a 
transient self-diffusion process will occur in which the number densities 
approach uniformity as t ~ ~ .  

The number density nl(r, t) of species 1 at the position r at time t is 
given by 

n l ( r , t )=  ( i = ~ l ~ [ r - p L - q i ( t ) ] P l ( q i ) )  (1) 

in which 8(r) is the d-dimensional Dirac delta function, and the angular 
brackets denote the statistical mechanical average over the initial phase F N 
in the ensemble used in Step 1 of the initial preparation. We follow the 
convention that the unadorned phase variables (e.g., F N, pS, qi, etc.) denote 
initial values, with values at a later time t [e.g., Fu( t  ), pN(t), qi(t), etc.] 
being explicitly so notated. We follow the "infinite checkerboard" interpre- 
tation of periodic boundary conditions discussed in the Appendix, with 
L = V l/d denoting the period of the system. 6 The integration over the 
initial positions qi is restricted to the reference cell v = 0, and q~(t) denotes 
the position of particle i at time t (not necessarily in cell 0) given that it was 
initially at q~. The sum over v = (v 1, v2 . . . .  , Vd) is a d-fold summation over 
all positive, negative, and zero integer values of the cell indices v~. Note 
that, for fixed values of r (not necessarily in cell 0), i, t, and 1~, the 
argument of the delta function will vanish for at most a single value of the 
index v. It is evident that nl(r, t) is a periodic function of the position r. It is 
important to note that the ensemble probability density whose use is 
signified by the angular brackets is independent of the species labeling, and 
is symmetrical in all the particle indices. The factor Pl(q~) accounts for the 
stochastic character of Step 2 of the initial preparation. 

At t = 0 Eq. (1) reduces, with use of the translational invariance of the 
periodic system, to 

nl(r ,0) = nel(r  ) (2) 

with n = N~ V denoting the (uniform) total number density. If we intro- 
duce into Eq. (1) an additional delta function and a compensating integra- 
tion (over the volume V) and eliminate P1 in favor of nl(r, 0) by use of Eq. 
(2), we can write it in the form 

= f dr' nl(r', 0) Gs(r - r', t) (3) nl(r, t) 
J 

6 The notation is easily adapted to accommodate cases in which the period of the system is 
different in different directions. 
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where we have introduced the van Hove (~~ self-correlation function 

G,(r-r',t)= V<~i~[r-vL-q,(t)]a[r'-q,]) 

=n-l E Ee[ r-vL-qi(t)]8[r '-qi 
i = l  v 

=<~[r-r'-~,L-Aq,(t)]) (4) 

In doing so, we have used the above-mentioned symmetry of the ensemble 
probability and again the translational invariance of the periodic system. 
Aql(t) = ql(t) - ql is the displacement of the representative particle 1. Note 
that it does not matter whether particle 1 was labeled as species 1 or as 
species 2 in Step 2 of the initial preparation, inasmuch as the angular 
brackets refer to the average over the ensemble used in Step 1. 

In the same way we can write the diffusion current of species 1 as 

J,(r,O= 
i = l  

with 

= f dr' nl(r', O)H,(r - r',t) 

(5) 

(6) 

Hs(r-  r', ') = V ( u  ql(t)]~[rt -- ql]> 

= < vl(t) ~v ~ [ r -  r '-- PL - ~ql(t) ])  (7) 

in which v;(t) denotes the velocity of particle i at time t. 
It is clear from the convolution form of Eqs. (3) and (6) that it will be 

advantageous to introduce Fourier transforms 

f ( k ,  t) = f dr exp(ik �9 r)f(r, t) (8) 

whereupon these equations become 

t?,(k, t) = t~l(k , O)(~s(k , i) 
(9) 

�9 I~(k, t) = #,(k, O)I~(k, t) 

with 

Gs(k,t) = <expI ik-Aql( t  )]> 
(10) 

Iqs(k, t) = (v,(t)exp [ ik-  Aql(t)] ) 

Gs(k,t) is the "self" part of the intermediate scattering We note that 
function, (4) and that 

Gs(k, t) = ik" I~s(k, t ) (11) 
0t 
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Wavelength- and Time-Dependent Diffusion Coefficient 

For a classical Fick's law diffusion process obeying 

J(r, t) = - D ~r n(r, t) (12) 

with a constant diffusion coefficient D, we have after Fourier transforma- 
tion 

.l(k, t) = ikD~(k, t) (13) 

Solving this for D we obtain 

- ik -  J(k,  t) 
D - (14) k2, (k, t) 

From Eqs. (9) we see, for the self-diffusion process considered here, that the 
k and t dependence of (~s and I4~ will not result in a constant diffusion 
coefficient. By analogy we accordingly define a wavelength- and time- 
dependent diffusion coefficient 

/ ) ( k ,  t) - - ik" . l l (k,  t) (15)  
k2~l(k, t) 

With use of Eqs. (9) and (11), we can write this as 

- i k .  I-Is(k, t) 
/ ) (k, t )  - k2~s(k,t ) (16) 

_ 1 8t v s 8  lnr~(k, t )  (17) 
k 2 

To this point our analysis and definitions apply without approximation 
to a finite periodic system. If we now consider the case of an isotropic fluid 
in the thermodynamic limit (L ~ co, N~ V = constant), it is not difficult to 
show that H e (k, t) becomes a vector in the direction of k. Then we can write 

I~s(k, t) - k .  It~(k, t) k2 k = ikGs(k, t ) l )(k , t  ) (18) 

using Eq. (16). Multiplication by nl(k, 0) and use of Eqs. (9) leads to 

Jl(k, t) =/krTl(k, t)/)(k, t) (19) 

Assuming the existence of the inverse Fourier transform D(r, t) o f / ) (k ,  t), 
this is equivalent to 

J,(r, t) = - f dr' D ( r -  r',t) ~ n,(r', t) (20) 

From this we see that in the thermodynamic limit the inverse Fourier 
transform D(r, t) of the wavelength- and time-dependent diffusion coeffi- 
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cient /)(k,t)  given by Eq. (17) is a temporally local, spatially nonlocal 
diffusion coefficient. 

From Eqs. (10) and (17) the formal k expansion 

/ ) (k, t )  = D(~ - k2D(2)(t) + . . .  (21) 

follows easily, with 

1 D(~ = 2 ~t  (Ax'(t)2) (22) 

1 a D ( 2 ) ( t ) -  4, 3t [ (AX'(/)4) - 3(AXl(t)2)2] (23) 

assuming the isotropy o f  an infinite fluid, and writing Ax](t ) for the x 
component of Aql(t ). Substitution of Eq. (21) into Eq. (19) followed by 
inverse Fourier transformation leads to the gradient expansion of the 
spatial nonlocality in Eq. (20), i.e., 

J l (r , t )  --- - D(~ n,(r,t) - D (2)( t )~r[  -~r"-~r nl(r' t)] . . . .  (24) 

with D(~ corresponding to the time-dependent generalization of the 
usual diffusion coefficient, and D(2)(t) to a similar generalization of the 
super-Burnett diffusion coefficient. From Eq. (22) the familiar expression 

O(~ t) = s  ( Vlx(O)v,x( t') ) (25) 

giving D(~ in terms of the velocity autocorrelation function follows 
easily, while with somewhat more labor (3'5) the super-Burnett coefficient 
can be expressed in terms of a "four-point" velocity autocorrelation func- 
tion 

f0' f,' D (2)(t) = dq dt 2 act 3 c(2)(tj, t2, t3) 
II 12 

c(2)(tl, t 2, t3) = (Vlx(O)Vlx(t,)vl~(t2)v]~(t3)) 
(26) 

- ~ (v,x(O)v,x(t,))(v~x(t2)v,x(t3)) 
P 

In these equaaons v~x(t ) denotes the x component of the velocity of 
particle 1, and in the last equation the sum is over the three distinct 
permutations of the tl, t2, and t 3 variables. 

Wavelength- and Epsllon-Dependent Diffusion Coefficient 

As is well known, one can also obtain a further generalization of Fick's 
law involving a diffusion coefficient which is nonlocal in both space and 
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time. We give the derivation in order to provide a basis for the discussion 
of some recent developments in Section 4. Returning to the classical Fick's 
law Eq. (13) and denoting Laplace transforms by 

we have 

from which 

f (k,E) =fo~ (27) 

A A 

J](k, r = ~l(k, 0)Hs(k, c) 

with the use of which Eq. (30) becomes 
^ 

- i k -  H , ( k ,  E) (32 )  
|162 = k2~s(k,, ) 

Using Eqs. (11)and (10) we have 

ik- H,(k,r = dte-" k,t) = ea,(k,e) - 1 (33) 

which permits Eq. (32) to be written in the familiar form (4) 

^ 1 - , G , ( k , , )  
@(k,,) - k2~(k,e  ) (34) 

A 

- i k .  J ( k ,  E) 
D -  k2 ~(k'e) (29) 

By analogy again we are led to define a wavelength- and epsilon-dependent 
diffusion coefficient 

A 

- i k .  J j ( k ,  c)  
@(k, e) - (30) 

A A 

We use the notation | E) [rather than D(k, e)] to emphasize that it is not 
the Laplace transform of / ) (k ,  t). Taking the Laplace transforms of Eqs. (9) 
gives 

~ l ( k ,  , )  = ~ l ( k ,  0)Gs(k, ,) 
(31) 

of the wavelength- and epsilon-dependent diffusion coefficient of general- 
ized hydrodynamics. For an isotropic fluid, which we assume in the large 

A 

system limit, H,(k, e) will be a vector in the direction of k, and Eq. (30) can 
be written as 

A 

= tkn,(k, c)| e) (35) j l (k ,e  ) . A ^ 

.l(k, ~) = ikD~ (k, ~) (28) 
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Taking both inverse transforms gives 

~, nl(r', t) (36) a , ( r , t )  = 

thus identifying the inverse Laplace-inverse Fourier transform ~(r, t) of 
A 
| e) as a spatially and temporally nonlocal diffusion coefficient. 

Alternatively, by substituting for Gs(k,e) in Eq. (34) using Eq. (31), 
rearranging, and taking only the inverse Laplace transform, we obtain 

~t tT,(k, t) = - k2fotdt' 4(k,t - t')tT,(k, t') (37) 

From dynamical reversibility and Eq. (10) we have 

G,(k, t) = (cos[k.  Aq](t)]) (38) 

from which we see that, again assuming isotropy, the k expansion of 
G~(k, t), and therefore that of ~(k, t), will contain only even powers of k. 
Substituting 

~(k,t) = ~ ( -  1)%~(2n)(t)k2n (39) 
n = 0  

into Eq. (37) and taking the inverse Fourier transform, we have 
~ )n+l 

~t n1(r' t )=  ~ (tdt, ~(2n)(t- t')( -~r'-~ n,(r, t') (40) 
n = 0 . J 0  

This temporally nonlocal gradient or Burnett expansion is the one discussed 
by Alley and Alder, (11) and as they showed, one easily finds for the first 
two coefficients 

~(~ = (V,x(O)v,x(t)) (41) 

1 2 4 
~(2)(t) = ~-.V[ ~t ] (Axl(t) ) - ~t f0 tdt' D(~ t')D(~ ') (42) 

where D (~ is given by Eq. (25) and also by 

D (~ = foo t dt' ~176 (43) 

Summary  

As was already emphasized, the above results are the same as those 
usually obtained by considering the case of a single tagged particle in a 
system of N -  1 mechanically similar particles. Here, however, we have 
considered a system containing an arbitrary number N 1 = fdrnl(r,t ) of 
particles of species 1 initially distributed nonuniformly over the volume V, 
together with N 2 = N - N l particles of species 2 similarly distributed, with 
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the overall number density n being uniform both initially and throughout 
the diffusion process. We find that the wavelength- and time-dependent 
diffusion coefficient is given by the usual expression involving only the van 
Hove self-correlation function of the unlabeled, homogeneous system. 
From this it follows that the diffusion coefficient is independent of the 
relative number densities of the two species. Furthermore, it is independent 
of the gradient of the number density [note also the linearity of Eq. (20)], so 
that there are no nonlinear Burnett effects. These results were quite 
generally expected, but as far as we are aware they have not previously 
been explicitly demonstrated. 

3. INITIAL GRADIENTS PRODUCED BY EXTERNAL FIELDS 

It is possible to question whether the simple results obtained in Section 
2 are attributable to the rather special character of the preparation of the 
initial state. Accordingly, in this section we show that the same results are 
obtained by starting from a "local equilibrium" initial state, in the spirit of 
the usual "linear response" theory. However, the important feature of the 
discussion will be the fact that we do not linearize at any stage of the 
analysis. 

We suppose that the initial state is sampled from the grand canonical 
ensemble for a system of two species which are mechanically identical 
except for the presence of two external potential fields ul(r ) and us(r ), with 
u](r ) acting only on the particles of species 1 and u2(r ) only on those of 
species 2. At this point the two external fields are arbitrary periodic 
functions of r, but we will shortly see how they must be constrained in 
order to satisfy our requirement that the initial state be an equilibrium state 
when the species labels are ignored. We imagine that, after the initial state 
is prepared in this fashion, the external fields are switched off at t = 0, and 
the system is allowed to evolve from this state according to its field-free 
Hamiltonian. The latter, according to our assumption of the mechanical 
similarity of the two species, is symmetrical in the indices of all the 
(fluctuating, among different initial states) N = N I + N 2 particles in the 
sampled system, with N i again denoting the fluctuating number of particles 
of species i. 

Under the above assumptions, the number density of species 1 is now 
given by 

n](r,t) = ~ NI= 0  N2 =0  NI!N2I 

•  ~ ~v • [ r -  v L -  q~,(t)] 

(44) 
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Here f i --  1 / k B T  with k B the Boltzmann constant. The absolute activity z/ 
of species i is exp(fl#/), where/L i is the chemical potential. Fu denotes the 
initial phase variables of the N = N l + N 2 particle system for particular 
values of N l and N2, and p(FN)= exp[--fl%(FN) ] is the corresponding 
unnormalized canonical ensemble probability density, with %(FN) denot- 
ing the field-free Hamiltonian function. The a I and a'] sums run over the 
particle indices of species l, the a 2 sum over those of species 2. The 
notation ul(al) is an abbreviation for ul(q~,). The quantity -'- is the grand 
canonical partition function 

N, =0 N2=0 NI! N2! al a2 

(45) 

For convenience we will number the particles of species 1 from 1 to N 1, 
those of species 2 from N l + 1 to N = N 1 + N 2. It will be convenient to use 
the abbreviations 

ei(r) = exp[ --flui(r)] (i = 1,2) (46) 

Transforming the double summation from N l and N 2 to N 1 and N, then 
changing the order of summation allows Eq. (45) to be written 

N=0"~,  I drup(rN) ~ N] NI =0 

The following Lemma is easily proved by induction: Let 

Fn : f dXn I0(xn) X (Bn-/ f i  SI(Xi) fl fz(Xj) (48) 
m=0 i=l j=m+l 

with x" = {x l, x 2 . . . . .  x , ) .  If 0(x ") and the integration limits are symmetric 
in the x i variables, then 

F n = f dx n p(x n) f l  [ fl(xi) @ f2(xi) ] (49) 
i=1 

Using this in Eq. (47) gives 
oo N 

1 f drN o(rN) 17 [ziel(~ + z2e2(~ (50) 
N=O a=l 

We can now immediately see that this will reduce to the grand canonical 
partition function for a uniform homogeneous system of absolute activity z 
if we require that the two potential fields satisfy the relation 

zlel(r ) + z2e2(r ) = z (51) 
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with z independent of r. This is the condition for the system to be at 
equilibrium when the species labels are ignored; we assume in all that 
follows that it is satisfied. 

Equation (44) can be similarly reduced to 

1 ~ z N 
nl(r, t ) = ~ f d r ' e , ( r ' )~  ~ f dF~ 0(]?N) 

N = 0  

N 

• E ES[r-vL-q~(t)]8[r'-q~] (52) 

The most convenient definition 7 of the van Hove self-correlation 
function in the grand canonical ensemble is (using translational invariance) 

N=0 "~.. 

with 

N 

fdr o(r ) E ES[ r -  l'L-- tl~(t)]8[r'-- tl~] 

(53) 

~7 I ~.j p(I?N) (54) n - - - -   ,.Nfdr  
V ~ V  N = 0  �9 

being the average total number density. In these terms we can write Eq. 
(52) as 

n l(r, t) = zl---~nz f dr' e,(r')Gs(r - r', t) (55) 

or with use of the initial conditions as in Section 2, 

t) = f dr' n](r', 0) Gs(r - r', t) (56) n l ( r ,  

which is identical to Eq. (3). 
It is clear from the above discussion that the diffusion current, defined 

now by the right-hand side of Eq. (44) with an additional factor of v~;(t), 
will correspondingly reduce to Eq. (6), with H s (r - r', t) now being defined 
by the right-hand side of Eq. (53) with an additional factor v~(t) intro- 
duced. All of the subsequent discussion of Section 2 then follows without 
change, except that the < - . .  > are now interpreted as grand canonical 
averages for the unlabeled, field-free system. 

The initial local equilibrium procedure used in this section can also be 
carried out in the canonical ( N V T )  ensemble, but at the expense of much 
more labor. In the course of the analysis the many-particle van Hove 

7 The definition is similar to the conventional definition of the equilibrium pair correlation 
function in the grand canonical ensemble.(t2) 
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correlation functions (both "self" and "distinct") appear, but can be shown 
to cancel in the thermodynamic limit by use of their factorization proper- 
ties when two or more groups of particles are widely separated (provided 
that the asymptotic behavior is approached sufficiently rapidly). 

4. D ISCUSSION 

We have seen, in Sections 2 and 3, that if the initial state of our 
mixture of two mechanically identical species of particles is sampled from 
an ensemble which is a total equilibrium ensemble if the species labels are 
ignored, but which corresponds to nonuniform density distributions of the 
individual species, then the assumed approach to equilibrium in the individ- 
ual species densities is governed by the usual generalized hydrodynamics 
versions of Fick's law involving a wavelength- and time-dependent (or, 
alternatively, a wavelength- and ePsilon-dependent) diffusion coefficient. 
These transform-space quantities have alternative interpretations in coordi- 
nate and time space involving nonlocality in space only, or in both space 
and time, respectively. These well-known results are usually derived for the 
case of a single tagged particle moving in a bath of mechanically similar 
untagged particles. Their derivation here for a general binary mixture of 
two mechanically similar species, without linearizing in small departures 
from equilibrium, verifies the common expectation that the self-diffusion 
coefficient is independent of both the relative number densities of the two 
components and the magnitude of the gradients. Thus we can indeed assert 
that self-diffusion is a linear process, but a nonlocal one. (6) 

We emphasize that the derivations presented here are formal in nature, 
inasmuch as we have not considered the questions of the existence of the 
various transform quantities, or the convergence of the k expansions. It 
seems appropriate, therefore, to conclude with a brief summary of what 
seems to be known or indicated by the various theoretical or molecular 
dynamics ("computer experiments") studies which have been made of the 
self-diffusion process. 

Fluid Systems, Navler-Stokes Transport Coefficients 

For nonzero values of k and finite values of t,/?(k, t) as given by Eqs. 
(10) and (17) is expected to be well behaved. Difficulties arise with respect 
to the long-wavelength and long-time limits, as was first noted by Alder 
and Wainwright (13) on the basis of molecular dynamics calculations on 
systems of hard spheres and hard disks. They were also able to explain 
these results on the basis of a theoretical model involving the use of 
hydrodynamic equations at a molecular level and applicable to more 
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general fluid models. These studies indicated that the normalized velocity 
autocorrelation function 

p~~ t) = tim ( Vlx(O)vlx( t) ) (57) 

(with m denoting the mass of a particle) varies asymptotically for large t 
according to 

p (n~ t ) ~ a~~ (58) 

with p --- d / 2  (d = 2 or 3). The coefficient a~ ~ depends on the density and 
dimensionality (and on the temperature for non-hard-core systems). As a 
result, in two-dimensional fluids, the time-dependent self-diffusion coeffi- 
cient D (0)(t) as given by Eq. (25) diverges in the long-time limit. In three 
dimensions the integral is convergent, but rather slowly compared to the 
exponential behavior expected from the Boltzmann equation. The same 
behavior, with different coefficients o~ ~ , a(x ~ etc., was found for the other 
transport coefficients (i.e., the shear viscosity, thermal conductivity, etc.), 
although with much less precision in the case of the molecular dynamics 
work. Subsequent molecular dynamics investigations, on both hard- 
core (1,14-16) and soft-core (17-18) fluid systems have confirmed and extended 
these early results. These molecular dynamics discoveries have spawned an 
immense theoretical literature, exemplified by the kinetic theory derivation 
of Eq. (58) by Dorfman and Cohen ~19) and the mode coupling theory of 
Ernst, Hauge, and van Leeuwen. ~2~ Since it is not our purpose to give a 
complete account here, we refer to a number of recent reviews. ~2~-2~) 

Within the realm of two- and three-dimensional fluids, the only case 
known to us which may be an exception to Eq. (58) is the two-dimensional 
classical electron gas. For this system Hansen et al. (26) found oscillatory 
behavior of the velocity autocorrelation function out to the longest times 
investigated in their molecular dynamics calculations. Their estimates of the 
self-diffusion coefficient D (0)(oo) for the N = 104 and 400 particle systems 
studied are consistent with the supposition that this quantity is finite in the 
large system limit, but they are probably also not inconsistent with a slow 
(logarithmic?) divergence with increasing system size. s We should also 
mention, however that de Schepper and Ernst (27) have found that for 
two-dimensional systems the true asymptotic time behavior may not be the 
t -1 behavior indicated in Eq. (58), but rather p~~ t - I ( ln t )  -1/2, in 
agreement with the "self-consistent" result of Wainwright, Alder, and 

SOur(15) extension of the mode coupling (or hydrodynamic) theory of Ernst et a132~ to finite 
periodic systems indicates that finite system effects will damp the long-time tail given by Eq. 
(58) so that D Co)(oo) will be finite for finite two-dimensional systems, but that it will diverge 
with increasing N. It is possible, however, that the assumptions underlying this hydrody- 
namic theory are inappropriate for long-ranged interactions. 
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Gass. (2s) There are kinetic theory reasons (27) for believing that the t -1 
behavior may in fact be dominant at the intermediate times accessible to 
the computer experiments. The difference between the two behaviors would 
be difficult to distinguish in any case, owing to the limited precision and 
time scales of the numerical studies. In either case, the self-diffusion 
coefficient is divergent. 

Somewhat in the spirit of Professor Cohen's original suggestion are the 
steady state self-diffusion molecular dynamics calculations which we carried 
out with Dr. Brad Holian, (~5'16) using a procedure similar to the nonequilib- 
rium molecular dynamics methods of Ashurst and Hoover. (29) These calcu- 
lations were done for both hard disks and hard spheres, over a range of 
system sizes, but at a single density. The values of D (0), estimated from the 
ratio of the diffusion current to the slope of the observed linear profile of 
the species number density, were of course finite for the finite systems 
studied for both d -- 2 and d = 3, and were in reasonable agreement with 
Eq. (25) extrapolated to t = oo with use of the observed finite system values 
of the velocity autocorrelation function. They appear to be consistent with 
the hypothesis of approach to a constant value with increasing system size 
for the three-dimensional case, and with a slow (logarithmic?) divergence 
with system size in two dimensions. Lebowitz and Spohn (3~ have recently 
been able to show theoretically, under certain assumptions, that this model 
should indeed approach at long times a steady state with a linear density 
profile, and with a diffusion constant given by the time integral of the 
velocity autocorrelation function. 

Lorentz Systems 

Lorentz gases, in which independent point particles diffuse within a 
system of infinitely massive scatterers, provide an interesting simplification 
of the diffusion process in fluids. Here the study of the motion of a single 
particle is all that is necessary, because of the absence of interactions 
among the independently moving point particles. The cases in which the 
scatterers are hard disks or spheres, either overlapping or nonoverlapping, 
have been studied both theoretically (31) and by molecular dynamics. (32-36~ 
The theory (31) again finds at low scattering densities a power-law decay of 
the velocity autocorrelation function, as given by Eq. (58), but with 
p = 1 + d / 2 ,  so that D(~ is convergent for both d = 2 and d = 3. The 
early molecular dynamics investigations (32-35~ confirmed the predicted 
power-law decay at low densities, but found values of the coefficient ag o) 
about three times larger than the theoretical value. Recently, however, 
Alley (36) found good agreement with the latter by extrapolating the ob- 
served density-dependent values from three very low density calculations to 
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zero density. There appears to be as yet no theoretical explanation for the 
very strong density dependence of the coefficient, or for the observed 
density dependence of the power-law exponent. 

Bunimovich and Sinai (37) have recently proved some rigorous theo- 
rems for finite two-dimensional Lorentz systems under periodic boundary 
conditions, one of which relates to the asymptotic behavior of the velocity 
autocorrelation function. If collision events between the moving particle 
and the scatterers are enumerated by n = 0, 1, 2 . . . . .  and if v n denotes the 
postcollision velocity, then they show that for large enough n 

(v n �9 v0) ~ v02 e x p ( -  n v) (59) 

with 0 < ~ < 1. The average is over the initial phase of the moving particle, 
for any fixed periodic scattering configuration satisfying certain assump- 
tions. There are apparently technical difficulties in translating the above 
result from its statement in terms of the collision index n into a correspond- 
ing statement in terms of the usual time correlation function. Also, it is 
quite possible (but not proved) that the above result applies only for such 
large n that the root-mean-square displacement is large compared to the 
fixed period of the scattering configuration. For these reasons, there is no 
necessary inconsistency with the power-law decay found by the above- 
mentioned kinetic theory and molecular dynamics investigations. 

Beyond Navier-Stokes 

Soon after the discovery by Alder and Wainwright (13) of the long-time 
tails of the time correlation functions corresponding to the Navier-Stokes 
(including therein the Fick's law) transport coefficients, Dorfman and 
Cohen (~9~ and Ernst, Hauge, and van Leeuwen (2~ noted that the theoreti- 
cal arguments which accounted for the behavior of those correlation 
functions would also predict that the temporally local Burnett and super- 
Burnett, etc., coefficients such as D(2)(t) in Eq. (23) would diverge with 
increasing t in both two and three dimensions. The detailed kinetic theory 
and mode-coupling derivations of these conclusions for simple fluid sys- 
tems have been given by de Schepper et  al. ,  (38'39) correcting earlier similar 
results obtained by others. (4~ W e  (15'16) have reported molecular dynam- 
ics calculations of D(2)(t) for hard disks (agreeing with similar results 
obtained by Alder (42)) and for hard spheres which, within their rather large 
error limits, tend to support these predictions. In addition Alley and 
Alder  (34-36) have carried out molecular dynamics calculations of D(2~(t) 
for Lorentz disks with similar conclusions. They (11'36) were apparently the 
first to suggest that the temporally nonlocal higher-order transport coeffi- 
cients | appearing in Eqs. (39) and (40) might be convergent in the 
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long-time limit even if D (2)(t), etc., were not. [In fact, they conjectured that 
this might be so for all systems for which D (~ is convergent.] They 
presented molecular dynamics evidence that this is indeed true for the 
Lorentz hard-disk system. Going one step further, they also argued that an 
additional transformation to a "vortex-moving reference frame" would lead 
to a convergent super-Burnett coefficient for three-dimensional fluid sys- 
tems. This conjecture is in conflict (43) with the theoretical results of de 
Schepper et a/., (38) but the convergence of ~(2)(t) for the Lorentz disk 
system has been confirmed from kinetic theory arguments by Ernst and 
van Beijeren. ~43) 9 The published molecular dynamics data for the super- 
Burnett coefficient for hard spheres do not appear to distinguish unambigu- 
ously whether the Alley and Alder modified | is convergent or not. 

Asymptot ic  Behavior  of Gs(r,t) 
Our discussion has confirmed the familiar fact that the van Hove 

self-correlation function Gs(r,t ) is the fundamental quantity for the self- 
diffusion process. For a classical isotropic diffusion process with a constant 
diffusion coefficient D, this function is the Gaussian 

_ l exp ( - r2 Gel(r, t) (6O) 
(4~rDt)d/2 ~ l 

One important question, then, is whether Gs(r, t) for any particular model 
of interest will in some sense approach this form in the long-time limit. We 
note that this question is well posed only for systems for which the limit 
D = D ~~ exists. For the three-dimensional fluid, where this condition 
is met, de Schepper and Ernst O9) have used mode-coupling theory to 
answer the question in the affirmative, obtaining a series of the form 

G~(r,t) = Gc,(r,t)[1 - bl(p)t -~ /2 -  b2(p)t -3/4 . . . .  q- O ( / - 1 ) ]  (61) 

in which the coefficients depend upon r and t only through the dimension- 
less combination p =  r/(Dt) 1/2. Our molecular dynamics results (15) are 
consistent with this conclusion. 

Alley and Alder (34~ have presented molecular dynamics evidence that 
G~(r, t) approaches Gaussian form at long times for the Lorentz hard-disk 
system, for which D(~ also exists. Bunimovich and Sinai (37) have 
shown rigorously that this should indeed be the case. 

For the hard-disk fluid, for which D(~ is divergent, one needs to 
rephrase the question slightly, to ask whether Gs(r, t) might approach at 

9This last-mentioned paper also discusses the long-time behavior of these quantities for 
various one-dimensional systems. 
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long times the related Gaussian 

G c l ( r , t ) - l [ - r 2 ]  
7r (ArE(t)) exp (~-2~)) (62) 

We ~]5) and Alley and Alder ~34) have published molecular dynamics results 
for hard disks which suggest that the trend of Gs(r, t) at long times is away 
from the Gaussian form. 
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APPENDIX: TRANSPORT IN FINITE PERIODIC SYSTEMS 

One often sees statements to the effect that transport coefficients, as 
given by the Green-Kubo formulas, are necessarily zero in a finite system, 
and hence that passage to the thermodynamic limit must be done first, 
followed by taking the long-time limit, in order to obtain meaningful 
results. One basis for these statements is the Einstein formula for the 
self-diffusion coefficient, 

D (~ = lim [Ax2(t)/2t] 
t - o o o  

which is clearly zero for a finite system with rigid boundaries, since AXl(t ) 
is bounded. What we wish to point out is that these assertions are not 
necessarily correct for the periodic boundary conditions usually employed 
in computer experiments. Our remarks are essentially an elaboration of a 
discussion by Lebowitz. O4) 

In actuality, periodic boundary conditions can be applied in two 
related, but different, ways. One possibility is the toroidal interpretation, in 
which the particles are considered to move on the surface of a torus, with a 
geodesic metric which is equivalent to the familiar "minimum image 
distance" convention. This is the interpretation frequently described by 
saying that a particle which leaves the system through one face of the 
volume V (usually a rectangular parallelepiped) simultaneously reenters 
through the opposite face. When this is done AXl(t ) is again bounded (by 
half the period of the system), and D c0) as given by the Einstein formula 
will again vanish in the long-time limit. Another disadvantage of this 
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procedure is that Vlx(t) = d A x l ( t ) / d t  is no longer a (piecewise, for hard 
cores) continuous function of t, there being &function contributions at 
those times when IAx~(t)[ is equal to a half-period. This leads to ambiguities 
in the calculation of the transport coefficients. 

An alternative interpretation of periodic boundary conditions is the 
"infinite checkerboard" or "crystal lographic" version, in which d- 
dimensional space is filled by periodic replication of the fundamental cell 
of volume V containing its N particles and their velocity vectors. Each 
particle is considered to be labeled with both its particle index i (running 
from 1 to N) and a cell index l, identifying the cell in which it was located 
at the initial time. The particle coordinates, e.g., the x coordinate X]o(t ) of 
particle i = 1, v = 0 and the corresponding displacement AX10(/) a r e  then 
continuous functions of t, and can take on any values in the infinite 
interval. The previous simple argument for a vanishing diffusion constant 
no longer applies. Of course, it does not follow that it is in fact nonzero or 
even finite. As far as we are aware, the question is unsettled, in general. The 
results of Bunimovich and Sinai (37) appear to show that the diffusion 
coefficient for a finite, periodic, hard-disk Lorentz gas is nonzero and finite 
under the checkerboard interpretation. Under this "checkerboard" interpre- 
tation Vlox(t ) = d A x w ( t ) / d t  is a (possibly piecewise) continuous function of 
t, without any extraneous ~ functions. Thus the usual equivalences between 
relations such as Eqs. (22) and (25) hold. We have shown elsewhere (16) how 
this viewpoint leads to a novel expression for the equation of state. It is also 
the most natural way in which to evaluate the time correlation functions 
associated with other transport coefficients, such as the shear viscosity. (45) 
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